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On the Energy Footprint of Mobile Testing
Frameworks
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Abstract—High energy consumption is a challenging issue that an ever increasing number of mobile applications face today. However,
energy consumption is being tested in an ad hoc way, despite being an important non-functional requirement of an application. Such
limitation becomes particularly disconcerting during software testing: on the one hand, developers do not really know how to measure
energy; on the other hand, there is no knowledge as to what is the energy overhead imposed by the testing framework. In this paper, as
we evaluate eight popular mobile UI automation frameworks, we have discovered that there are automation frameworks that increase
energy consumption up to roughly 2200%. While limited in the interactions one can do, Espresso is the most energy efficient framework.
However, depending on the needs of the tester, Appium, Monkeyrunner, or UIAutomator are good alternatives. In practice, results show
that deciding which is the most suitable framework is vital. We provide a decision tree to help developers make an educated decision on
which framework suits best their testing needs.

Index Terms—Mobile Testing; Testing Frameworks; Energy Consumption.
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1 INTRODUCTION

The popularity of mobile applications (also known as
apps) has brought a unique, non-functional concern to the
attention of developers – energy efficiency [1]. Mobile apps
that (quickly) drain the battery of mobile devices are per-
ceived as being of poor quality by users1. As a consequence,
users are likely to uninstall an app even if it provides useful
functionality and there is no better alternative. In fact, mobile
network operators recommend users to uninstall apps that
are energy inefficient2. It is therefore important to provide
developers with tools and knowledge to ship energy efficient
mobile apps [2], [3], [4], [5].

Automated testing tools help validate not only functional
but also non-functional requirements such as scalability and
usability [6], [7]. When it comes to energy testing, the most
reliable approach to measure the energy consumption of
mobile software is by using user interface (UI) automation
frameworks [8], [9], [10], [11], [12], [13]. These frameworks are
used to mimic user interaction in mobile apps while using an
energy profiling tool. An alternative is to use manual testing
but it creates bias, is error prone, and is both time and human
resource consuming [14].

While using a UI automation framework is the most
suitable option to test apps, there are still energy-related con-
cerns that need to be addressed. By replicating interactions,
frameworks are bypassing or creating overhead on system
behavior. For instance, before executing a Tap3, it is necessary
to programmatically look up the target UI component. This
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1. Apigee’s survey on the reasons leading to bad mobile app reviews:

https://cloud.google.com/apigee/news (visited on September 10, 2019)
2. High Risk Android Apps: https://www.verizonwireless.com/

support/services-and-apps/ (visited on September 10, 2019)
3. Tap is a gesture in which a user taps the screen with his finger.

creates extra processing that would not happen during an
ordinary execution of the app. These idiosyncrasies are
addressed in the work proposed in this paper, as they may
have a negative impact on energy consumption results.

As a motivational example, consider the following sce-
nario: an app provides a tweet feed that consists of a list
of tweets including their media content (such as, pictures,
GIFs, videos, URLs). The product owner noticed that users
rather value apps with low energy consumption. Hence,
the development team has to address this non-functional
requirement.

One idea is to show plain text and pictures with low
resolution. Original media content would be rendered upon
a user Tap on the tweet, as depicted in Figure 1. With
this approach, energy is potentially saved by rendering
only media that the user is interested in. To validate this
solution, developers created automated scripts to mimic user
interaction in both versions of the app while measuring the
energy consumption using a power meter. The script for the
original version consisted in opening the app and scroll the
next 20 items, whereas the new version’s script consisted in
opening the app and scrolling the next 20 items while tapping
in 5 of them (a number they agreed to be the average hit rate
of their users). A problem that arises is that the automation
framework spends more energy to perform the five extra
Taps. Imagining that for each Tap the automation framework
consumes 1 joule4 (J), the new version will have to spend at
least 5J less than the original version to be perceived as more
efficient. If not, it gets rejected even though the new version
could be more efficient.

More efficient frameworks could reduce this threshold
to a more insignificant value. However, since automation
frameworks have not considered energy consumption as an
issue, developers do not have a sense of which framework is
more suitable to perform reliable energy measurements.

4. Joule (J) is the energy unit in the International System of Units.
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Fig. 1. Two versions of the example app.

The primary goal of this work is to study popular UI
automation frameworks in the context of testing the energy
efficiency of mobile apps. We address the following research
questions:

• RQ1: Does the energy consumption overhead created
by UI automation frameworks affect the results of the
energy efficiency of mobile applications?

• RQ2: What is the most suitable framework to profile
energy consumption?

• RQ3: Are there any best practices when it comes to
creating automated scripts for energy efficiency tests?

We measure the energy consumption of common user
interactions: Tap, Long Tap, Drag And Drop, Swipe, Pinch &
Spread, Back button, Input text, Find by id, Find by description,
and Find by content.

Results show that Espresso is the framework with best
energy footprint, although Appium, Monkeyrunner, and UIAu-
tomator are also good candidates. On the other side of the
spectrum are AndroidViewClient and Calabash, which makes
them not suitable to test the energy efficiency of apps yet. For
a general purpose context, Appium follows as being the best
candidate. We have further discovered that methods that use
content to look up UI components need to be avoided since
they are not energy savvy.

Overheads incurred by UI automation frameworks ought to be
considered when measuring energy consumption of mobile apps.

To sum up, the main contributions of this paper are:

• A comprehensive study on energy consumption of
user interactions mimicked by UI automation frame-
works.

• Comparison of the state-of-the-art UI automation
frameworks and their features in the context of energy
tests.

• Best practices regarding the API usage of the frame-
work for energy tests, including a decision tree to help
choose the framework which suits one needs.

2 RELATED WORK

UI automation frameworks play an important role on the
research of mobile software energy efficiency. They are used
as part of the experimental setup for the validation of ap-
proaches for energy efficiency of mobile apps. Monkeyrunner
has been used to assess the energy efficiency of Android’s
API usage patterns [10]. It was found that UI manipulation
tasks (e.g., method findViewById) and database opera-
tions are expensive in terms of energy consumption. These
findings suggest that UI automation frameworks might as
well create a considerable overhead on energy consumption.
Monkeyrunner has also been used to assess benefits in energy
efficiency on the usage of Progressive Web Apps technology
in mobile web apps [15], despite the fact that no statistically
significant differences were found. Android View Client has
been used to assess energy efficiency improvements of per-
formance based optimizations for Android applications [16],
[17], being able to improve energy consumption up to 5% in
real, mature Android applications. Other works have also
used Robotium [18], Calabash [12], [13], and RERAN [19],
[20]. Our work uses a similar approach for assessing and
validating energy efficiency, but it has distinct goals as we
focus on the impact of UI automation frameworks on energy
efficiency results.

Previous work studied five Android testing frameworks
in terms of fragilities induced by maintainability [21], [22].
Five possible threats that could break tests were identified:
1) identifier change, 2) text change, 3) deletion or relocation
of UI elements, 4) deprecated use of physical buttons, and
5) graphics change (mainly for image recognition testing
techniques). These threats are aligned with efforts from
existing works [23]. Our paper differentiates itself by focusing
on the energy efficiency of Android testing tools.

In a study comparing Appium, MonkeyTalk, Ranorex,
Robotium, and UIAutomator, Robotium and MonkeyTalk stood
out as being the best frameworks for being easy to learn
and providing a more efficient comparison output between
expected and actual result [24]. A similar approach was
taken in other works [25], [26] but although they provide
useful insights about architecture and feature set, no sys-
tematic comparison was conducted. We compare different
frameworks with a quantitative approach to prevent bias of
results.

Linares-Vásquez M. et al. (2017) have studied the cur-
rent state-of-the-art in terms of the frameworks, tools, and
services available to aid developers in mobile testing [4]. It
focused on 1) Automation APIs/Frameworks, 2) Record
and Replay Tools, 3) Automated Test Input Generation
Techniques, 4) Bug and Error Reporting/Monitoring Tools,
5) Mobile Testing Services, and 6) Device Streaming Tools. It
envisions that automated testing tools mobile apps should
address development restrictions: 1) restricted time/budget
for testing, 2) needs for diverse types of testing (e.g., energy),
and 3) pressure from users for continuous delivery. In a
similar work, these issues were addressed by surveying
102 developers of Android open source projects [27]. This
work identified a need for automatically generated test cases
that can be easily maintained over time, low-overhead tools
that can be integrated with the development workflow, and
expressive test cases. Our work differs from these studies by
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Fig. 2. Experimentation system to compare UI automation frameworks
for Android.

providing an empirical comparison solely on UI automation
frameworks, and addressing energy tests.

Choudhary R., et al. (2015) compared automated input
generation (AIG) techniques using four metrics [28]: ease of
use, ability to work on multiple platforms, code coverage,
and ability to detect faults. It was found that random
exploration strategies by Monkey5 or Dynodroid [29] were
more effective than more sophisticated approaches. Although
our work does not scope AIG tools, very often they use UI
automation frameworks (e.g., UIAutomator and Robotium)
underneath their systems [30], [31], [32], [33]. Results and
insights about energy consumption in our study may also ap-
ply to tools that build on top of UI automation frameworks.

3 DESIGN OF THE EMPIRICAL STUDY

To answer the research questions outlined in the Introduction,
we designed an experimental setup to automatically measure
energy consumption of Android apps. In particular, our
methodology consists in the following steps:

1) Preparation of an Android device to use with a
power monitor.

2) Creation of a stack of UI interaction scripts for all
frameworks.

3) Automation of the execution of tests for each frame-
work to run in batch mode.

4) Collection and analysis of data.

Our methodology is illustrated in Figure 2. There are
three main components: a desktop computer that serves as
controller; a power monitor; and a mobile device running
Android, i.e., the device under test (DUT). The desktop
computer sends interaction instructions to be executed
in the mobile device. The power monitor collects energy
consumption data from the mobile device and sends it to the
desktop computer. Finally, the desktop computer analyzes
data and generates reports back to the user.

3.1 Energy Data Collection

We have adopted a hardware-based approach to obtain
energy measurements. We use Monsoon’s Original Power
Monitor with the sample rate set to 5000Hz, as used in
previous research [10], [11], [28], [34], [35], [36], [37], [38].
Measurements are obtained using the Physalia toolset6 – a

5. UI/Application Exerciser Monkey also known as Monkey tool: https://
developer.android.com/studio/test/monkey.html (visited on September
10, 2019).

6. Physalia’s webpage: https://tqrg.github.io/physalia/ (visited on
September 10, 2019).

Python library to collect energy consumption measurements
in Android devices. It takes care of syncing the beginning and
ending of the UI interaction script with the measurements
collected from the power monitor. The steps described in
Physalia’s tutorial7 were followed to remove the device’s
battery and connect it directly to the Monsoon’s power
source using a constant voltage of 3.8V. This is important to
ascertain that we are collecting reliable energy consumption
measurements.

3.2 Platform

The choice of the Android platform lies in the fact that it
is one of the most popular operating systems (OS) and is
open source. This helps to understand the underlying system
and use a wide range of instrumentation tools. However, the
techniques and ideas discussed in this paper apply to other
operating systems as well.

3.3 UI Automation Frameworks

The state-of-the-art UI automation frameworks for Android
used in our study are Appium, UIAutomator, PythonUIAutoma-
tor, AndroidViewClient, Espresso, Robotium, Monkeyrunner, and
Calabash. The frameworks were chosen following a systematic
criteria/review: freely available to the community, open
source, featuring a realistic set of interactions, expressed
through a human readable and writable format (e.g., pro-
gramming language), and used by the mobile development
industry. To assess this last criterion StackOverflow and Github
were used as proxy. Some frameworks have been discarded
for not complying with this criteria. As an example, Ranorex8

is not free to the community and RERAN [19] is designed
to be used with a recording mechanism. MonkeyTalk has not
been publicly released after being acquired by Oracle9, and
Selendroid is not ready to be used with the latest Android
SDK10. We decided not to include UI recording tools since
they rely on the underlying frameworks (e.g., Espresso Test
Recorder, Robotium Recorder).

Although most frameworks support usage directly
through screen coordinates, we only study the usage by
targeting UI components. Usage through coordinates makes
the tests cumbersome to build and maintain, and is not
common practice.

An overview of the features of the frameworks is in
Table 1. It also details the frameworks as to whether the app’s
source code is required, whether it is remote script-based,
i.e., simple interaction commands can be sent in real
time to the DUT; WebView support, i.e., whether hybrid
apps can also be automated; compatibility with iOS, and
supported programming languages. The most common lan-
guages supported by these frameworks are Python and Java.

7. Tutorial’s webpage: https://tqrg.github.io/physalia/monsoon
tutorial (visited on September 10, 2019).

8. Ranorex’s website available at https://www.ranorex.com (visited
on September 10, 2019).

9. More information about MonkeyTalk’s acquisition: https://www.
oracle.com/corporate/acquisitions/cloudmonkey/ (visited on Septem-
ber 10, 2019)

10. Running Selendroid would require changing its source code:
https://github.com/selendroid/selendroid/issues/1116 and https://
github.com/selendroid/selendroid/issues/1107 (visited on September
10, 2019)
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TABLE 1
Overview of the studied UI automation frameworks

Framework Android Appium Calabash Espresso Monkeyrunner Python Ui Robotium UIAutomator
View Client Automator

Tap X X X X X X X X
Long Tap X X X X X X X X
Drag And Drop X X X × X X X X
Swipe X X X X X X X X
Pinch & Spread × × X × × X × X
Back button X X X X X X X X
Input text X X X X X X(*) X(*) X(*)
Find by id X X X X X X X X
Find by description X X X X × X × X
Find by content X X X X × X X X
Tested Version 13.2.2 1.6.3 0.9.0 2.2.2 n.a. 0.3.2 5.6.3 2.1.2
Min Android SDK All Recmd. ≥ 17 All ≥ 8 n.a. ≥ 18 ≥ 8 ≥ 18
Black Box Yes Yes Limited (**) No Yes Yes Yes Yes
Remote script-based Yes Yes Yes No Yes Yes No No
WebView Support Limited Yes Yes Yes Limited Limited Yes Limited
iOS compatible No Yes Yes No No No No No
BDD support No Yes Yes Yes No No Yes Limited
Integration test Yes Yes Yes No No Yes Yes Yes
Language Python Any WebDriver Gherkin/Ruby Java Jython Python Java Java

compatible lang.
License Apache 2.0 Apache 2.0 EPL 1.0 Apache 2.0 Apache 2.0 MIT Apache 2.0 Apache 2.0
SOverflow Qns � 164 3,147 569 292 437 0 1,012 438
Github Stars � 540 5,514 1,429 n.a. n.a. 719 2,165 n.a.
(*) Although it supports Input Text, it does not apply a sequential input of key events. This is more energy efficient but it is more artificial, bypassing
real behavior (e.g., auto correct).
(**) Requires to manually enable Internet permission ("android.permission.INTERNET").

3.4 Test cases

For each framework, a script was created for every in-
teraction that was supported by the framework, totaling
73 scripts. Scripts were manually and carefully crafted
and peer reviewed to ascertain similar behavior across all
frameworks. Essentially, each script calls a specific method
of the framework that mimics the user interaction that
we pretend to study. To minimize overheads from setup
tasks (e.g., opening the app, getting app’s UI hierarchy), the
method is repeated multiple times: in the case of Back Button,
we repeat 200 times; in the cases of Swipe, Pinch and Spread,
or lookup methods, we repeat 40 times; in the remaining
interactions, we repeat 10 times.

3.5 Setup and Metrics

We compare the overhead in energy consumption using as
baseline the energy usage of interactions when executed
by a human. Baselines for each interaction were measured
by asking two Android users (one female and one male)
to execute the interactions as in the automated scripts. For
instance, in one of the experiments the participants had
to click 200 times in the Back Button. All interactions were
measured except for Find by id, Find by description, and Find
by content, as these are helper methods provided by the UI
automation frameworks and are not applicable to human
interactions.

As mentioned above, energy measurements are prone
to random variations due to the nature of the underlying
OS. Furthermore, one can also expect errors from the data
collected from a power monitor [39]. To make sure energy
consumption values are reliable and have enough data to
perform significance tests, each experiment was identically
and independently repeated 30 times.

Since user interactions often trigger other tasks in a
mobile device, tests have to run in a controlled environment.
In other words, we are trying to measure the platform

TABLE 2
Android device’s system Settings

Setting Value
☼ Adaptive Brightness c Manual - 78%
Ü Bluetooth c Off
O WiFi d On
Cellular c No SIM card
´ Location Services c Off
Æ Auto-rotate screen c Off - Portrait
� Zen mode d On - Total Silence
µ Pin/Pattern Lock Screen c Off
× Don’t Keep Activities d On
è Account Sync c Off
ð Android Version 6.0.1

overhead and we don’t want the app activity to interfere
with that measurement. Thus, an Android application was
developed by the authors for this particular study. It differs
from a real app in the sense that this app is a strategy
to prevent any extra work from being performed by the
foreground activity. The main goal is preventing any side-
effect from UI interactions, which in real apps would result
in different behaviors, hence compromising measurements.
Hence, the app prevents the propagation of the system’s
event created by the interaction and no feedback is provided
to the user. This way, experiments only measure the work
entailed by frameworks.

The main settings used in the device are listed in Table 2.
Android provides system settings that can be useful to con-
trol the system behavior during experiments. Notifications
and alarms were turned off, lock screen security was disabled,
and the “Don’t keep Activities” setting was enabled. This
last setting destroys every activity as soon as the user leaves
it, erasing the current state of an app11.

WiFi is kept on as a requirement of our experimental
setup. The reason lies in the fact that Android automation
frameworks resort to the Android Debug Bridge (ADB) to
communicate with the mobile device. ADB allows to in-

11. More about “Don’t Keep Activities” setting available at: https:
//goo.gl/SXkxVy (visited on September 10, 2019).
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stall/uninstall/open apps, send test data, configure settings,
lock/unlock the device, among other things. By default, it
works through USB, which interferes with energy consump-
tion measurements. Although Android provides settings to
disable USB charging, if the USB port remains connected
to the device, the measurements of energy consumption
become obsolete. Fortunately, ADB can be configured to be
used through a WiFi connection, which was leveraged in this
work.

In addition to the energy consumption sources mentioned
before, there is another common one – the cost of having the
device in idle mode. In this context, we consider idle mode
when the device is active with the settings in Table 2 but is not
executing any task. In this mode, the screen is still consuming
energy. We calculate the idle cost for each experiment to
assess the effective energy consumption of executing a given
interaction. We measure the idle cost by collecting the energy
usage of running the app for 120 seconds without any
interaction. In addition to the mean energy consumption,
we compare different frameworks using the mean energy
consumption without the corresponding idle cost, calculated
as follows:

x̄′ =

∑N=30
i=1 (Ei − IdleCost ∗ ∆ti)

N
(1)

where N is the number of times experiments are repeated
(30), Ei is the measured energy consumption for execution
i, IdleCost is the energy usage per second (i.e., power) of
having the device in idle mode, expressed in watts (W), and
∆ti the duration of execution i.

After removing idle cost, we compute overhead in a
similar fashion as previous work [40]:

Overhead(%) = (x̄′/x̄′
human − 1) × 100 (2)

In other words, overhead is the percentage change of the
energy consumption of a framework when compared to the
real energy consumption induced by human interaction.

We also use x̄′ to compute the estimated energy consump-
tion for a single interaction (Sg) as follows:

Sg = x̄
′/M (3)

where M is the number of times the interaction was repeated
within the same execution (e.g., in Back Button, M = 200).

Experiments were executed using an Apple iMac Mid 2011
with a 2.7GHz Intel Core i5 processor, 8GB DDR3 RAM, and
running OS X version 10.11.6. Room temperature was con-
trolled for 24°C (75°F). DUT was a Nexus 5X manufactured
by LG, running Android version 6.0.1. All scripts, mobile
app, and data are available in the Github repository of the
project12, which is released with an open source license.

4 RESULTS

Next, we report the results obtained in the empirical study.

4.1 Idle Cost

In a sample of 30 executions, the mean energy consumption
of having the app open for 120 seconds without any interac-
tion is 22.67J. The distribution of the measurements across

12. Project’s Github repository: https://github.com/luiscruz/
physalia-automators visited on September 10, 2019.

22.0 22.5 23.0 23.5
Energy (J)

Idle Cost

Fig. 3. Violin plot with distribution of the energy consumption of the app
during 120 seconds.

TABLE 3
Descriptive statistics of Tap interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) d Overhead #
Human 5.56 1.61 12.84 3.14 78.44 — 1
AndroidViewClient 19.71 0.21 42.10 11.75 293.86 8.65 274.6% 7
Appium 54.73 1.14 128.47 30.46 761.49 21.38 870.8% 9
Calabash 29.25 0.72 60.10 17.89 447.28 14.09 470.2% 8
Espresso 6.07 0.16 12.93 3.63 90.70 0.49 15.6% 2
Monkeyrunner 18.08 1.28 49.97 8.63 215.87 4.11 175.2% 5
PythonUiAutomator 9.15 0.54 18.93 5.57 139.32 2.24 77.6% 4
Robotium 14.59 4.00 25.63 9.74 243.57 2.11 210.5% 6
UiAutomator 7.64 0.55 17.77 4.28 107.03 1.13 36.5% 3

the 30 executions is shown in Figure 3. This translates into
a power consumption of 0.19W (in other words, the app
consumes 0.19 joules per second in idle mode). This value
is used in the remaining experiments to factor out idle cost
from the results.

4.2 Tap

Table 3 presents results for the Tap interaction. Each row
in the table describes a framework as a function of the
mean energy consumption (x̄), standard deviation of energy
consumption (s), duration of each execution of the script (∆t)
in seconds, the mean energy consumption without idle cost
(x̄′, see Eq. 1), the estimated energy consumption for a single
interaction (Sg, see Eq. 3), the Cohen’s-d effect size (d), the
percentage overhead when compared to the same interaction
when executed by a human (as in Eq. 2), and the position
in the ranking (#), i.e, the ordinal position when results are
sorted by the average energy consumption, and . With the
exception of the results for Human which are placed in the
first row, the table is sorted in alphabetical order for the sake
of comparison with results of other interactions.

From our experiments, we conclude that Espresso is the
most energy efficient framework for Taps, consuming 3.63J
on average after removing idle cost, while a single Tap is
estimated to consume 0.09J. When compared to the human
interaction, Espresso imposes an overhead of 16%. The least
efficient frameworks for a Tap are Appium, and Calabash,
with overheads of 871% and 470%, respectively. Using
these frameworks for taps can dramatically affect energy
consumption results.

A visualization of these results is in Figure 4. The height
of each white bar shows the mean energy consumption
for the framework. The height of each green or yellow bar
represents the energy consumption without the idle cost.
The yellow bar and the dashed horizontal line highlight the
baseline energy consumption. In addition, it shows a violin
plot with the probability density of data using rotated kernel
density plots. The violin plots provide a visualization of the
distribution, allowing to compare results regarding shape,
location, and scale. This is useful to assess whether data
can be modeled with a normal distribution, and compare
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Fig. 4. Violin plot of the results for the energy consumption of Tap.

TABLE 4
Descriptive statistics of Long Tap interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) d Overhead #
Human 13.33 2.21 32.86 7.12 177.92 — 1
AndroidViewClient 49.18 5.24 119.21 26.66 666.40 4.45 274.6% 7
Appium 25.34 0.86 49.60 15.96 399.08 7.75 124.3% 5
Calabash 46.96 1.81 94.27 29.14 728.57 12.44 309.5% 9
Espresso 19.87 0.54 37.00 12.88 321.94 6.20 80.9% 3
Monkeyrunner 21.68 0.74 48.07 12.60 315.04 5.57 77.1% 2
PythonUiAutomator 48.19 12.63 101.13 29.08 727.02 2.70 308.6% 8
Robotium 39.35 1.82 99.97 20.46 511.40 8.71 187.4% 6
UiAutomator 22.39 0.75 45.40 13.81 345.20 6.90 94.0% 4

the standard deviations of the measurements in different
frameworks.

4.3 Long Tap

Results for the interaction Long Tap are in Table 4 and Figure 5.
Monkeyrunner and Espresso are the most efficient frameworks,
with overheads of 77% (x̄′ = 12.60J) and 81% (x̄′ = 12.88J),
respectively. PythonUIAutomator and Calabash are the most
inefficient (overhead over 300%).

A remarkable observation is the efficiency of Appium’s
Long Tap (Sg = 0.40J) when compared to its regular Tap
(Sg = 0.76J). Common sense would let us expect Tap to
spend less energy than Long Tap, but that is not the case.
This happens because Appium’s usage of Long Tap requires
a manual instantiation of a TouchAction object, while Tap
creates it internally. Although creating such object makes
code less readable, the advantage is that it can be reused for
the following interactions, making a more efficient use of
resources.
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Fig. 5. Violin plot of the results for energy consumption of Long Tap.

TABLE 5
Descriptive statistics of Drag and Drop interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) d Overhead #
Human 7.55 1.91 23.70 3.08 76.90 — 1
AndroidViewClient 21.31 0.76 62.15 9.57 239.24 6.67 211.1% 3
Appium 43.71 1.14 85.00 27.65 691.27 19.69 798.9% 7
Calabash 134.08 3.55 336.33 70.53 1763.27 26.79 2193.0% 8
Monkeyrunner 28.50 1.29 52.97 18.49 462.22 17.96 501.1% 5
PythonUiAutomator 36.30 3.77 93.53 18.62 465.56 5.54 505.4% 6
Robotium 20.63 1.02 52.17 10.77 269.29 7.75 250.2% 4
UiAutomator 14.48 0.63 30.27 8.76 219.02 8.19 184.8% 2
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Fig. 6. Violin plot of the results for energy consumption of Drag and Drop.

4.4 Drag and Drop

Results for the interaction Drag and Drop are in Table 5
and Figure 6. UIAutomator is the best testing framework
with an overhead of 185% (x̄′ = 14.48J). Espresso is not
included in the experiments since Drag and Drops are not
supported. The most energy greedy framework is Calabash
with an overhead of 2193%. When compared to UIAutomator,
one Drag and Drop with Calabash is equivalent to more than
11 Drag and Drops. Hence, Calabash should be avoided for
energy measurements that include Drag and Drops.

4.5 Swipe

Results for the interaction Swipe are presented in Table 6 and
Figure 7. Espresso is the best framework with an overhead of
29%, while Robotium, AndroidViewClient, Monkeyrunner, and
Calabash are the most energy greedy with similar overheads,
above 400%.

4.6 Pinch and Spread

Results for the interaction Pinch and Spread are presented in
Table 7 and Figure 8. Although this interaction is widely used
in mobile applications for features such as zoom in and out,
only Calabash, PythonUIAutomator, and UIAutomator support
it out of the box. UIAutomator is the most efficient frame-
work, spending less energy than the equivalent interaction
performed by a human (−5%). The remaining frameworks,
PythonUiAutomator and Calabash were not as efficient, provid-
ing overheads of 181% and 374%, respectively.

TABLE 6
Descriptive statistics of Swipe interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) d Overhead #
Human 9.11 1.09 24.48 4.48 56.05 — 1
AndroidViewClient 45.29 0.62 115.87 23.39 292.41 27.93 421.7% 7
Appium 17.09 0.46 30.00 11.42 142.80 11.53 154.8% 3
Calabash 43.27 0.81 93.73 25.56 319.46 27.21 469.9% 9
Espresso 10.35 0.26 24.10 5.79 72.43 2.51 29.2% 2
Monkeyrunner 36.63 1.49 68.67 23.65 295.69 25.16 427.5% 8
PythonUiAutomator 26.42 0.91 54.60 16.11 201.32 14.05 259.1% 4
Robotium 41.30 0.67 96.00 23.16 289.46 26.85 416.4% 6
UiAutomator 27.56 0.65 60.13 16.20 202.49 19.93 261.2% 5
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Fig. 7. Violin plot of the results for energy consumption of Swipe.

TABLE 7
Descriptive statistics of Pinch and Spread interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) d Overhead #
Human 9.59 1.37 21.91 5.45 68.10 — 2
Calabash 41.31 8.66 81.93 25.83 322.83 4.82 374.0% 4
PythonUiAutomator 26.39 1.23 58.77 15.29 191.09 9.59 180.6% 3
UiAutomator 9.19 1.66 21.23 5.17 64.67 -0.21 -5.0% 1

4.7 Back Button

Results for the interaction Back Button are presented in Table 8
and Figure 9. In this case, human interaction was consider-
ably less efficient than most frameworks, being ranked fifth
on the list. The main reason for this is that frameworks do
not realistically mimic the Back Button interaction. When the
user presses the back button, the system produces an input
event and a vibration or haptic feedback simultaneously.
However, frameworks simply produce the event. Thus,
results are not comparable with the human interaction. Still,
AndroidViewClient provided an overhead of 440%, being the
most inefficient framework.

Another remarkable result was that Robotium, despite
being energy efficient after removing idle cost, it is the
slowest framework. Thus, it is likely that Robotium is using
a conservative approach to generate events in the device: it
suspends the execution to wait for the back button event to
take effect in the app.

4.8 Input Text

Results for the interaction Input Text are presented in Table 9
and Figure 10. Each iteration of Input Text consists in writing
a 17-character sentence in a text field and then clearing
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Fig. 8. Violin plot of the results for energy consumption of Pinch and
Spread.

TABLE 8
Descriptive statistics of Back Button interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) d Overhead #
Human 17.90 2.56 43.94 9.60 47.98 — 5
AndroidViewClient 85.75 2.11 179.73 51.79 258.94 17.79 439.7% 9
Appium 2.43 0.17 3.33 1.80 9.01 -8.33 -81.2% 2
Calabash 30.95 0.77 80.57 15.73 78.63 5.99 63.9% 8
Espresso 8.89 0.29 35.17 2.25 11.25 -7.66 -76.6% 4
Monkeyrunner 1.84 0.12 4.07 1.08 5.38 -9.13 -88.8% 1
PythonUiAutomator 53.62 1.78 220.03 12.04 60.20 1.68 25.5% 7
Robotium 60.44 5.18 308.10 2.22 11.10 -1.88 -76.9% 3
UiAutomator 49.87 1.03 208.20 10.53 52.64 0.83 9.7% 6
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Fig. 9. Violin plot of the results for energy consumption of Back Button.

it all back to the initial state. Thus, the value for a single
interaction (Sg) is the energy spent when this sequence of
events is executed, but can hardly be extrapolated for other
input interactions.

UIAutomator is the framework with the lowest energy
consumption (x̄′ = 1.42J). The human interaction spends
more energy than most frameworks. The reason behind
this is that frameworks have a different way to deal with
text input. Most frameworks generate a sequence of events
that will generate the given sequence of characters. On
the contrary, the human interaction resorts to the system
keyboard to generate this sequence. Thus the system has to
process a sequence of taps and match it to the right character
event. There are even other frameworks, namely UIAutomator,
PythonUIAutomator, and Robotium, that, as showed in the
overview of Table 1, implement Input Text more artificially.
Instead of generating the sequence of events, they directly
change the content of the text field. This is more efficient but
bypasses system and application behavior – e.g., automatic
text correction features.

Results showed that the AndroidViewClient is very in-
efficient and its overhead (936%) is not negligible when
measuring the energy consumption of mobile apps.

4.9 Find by id

Results for the task Find by id are presented in Table 10 and
Figure 11. Find by id is a method that looks up for a UI
component that has the given id. It does not mimic any user

TABLE 9
Descriptive statistics of Input Text interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) d Overhead #
Human 22.11 4.06 54.09 11.89 1189.37 — 6
AndroidViewClient 222.08 4.31 523.37 123.18 12318.21 27.68 935.7% 9
Appium 44.43 1.89 105.27 24.54 2453.84 4.62 106.3% 8
Calabash 27.14 1.03 62.40 15.35 1534.70 1.40 29.0% 7
Espresso 6.83 0.18 14.03 4.18 417.96 -3.45 -64.9% 3
Monkeyrunner 6.18 0.29 8.03 4.67 466.58 -3.21 -60.8% 5
PythonUiAutomator 9.16 4.35 25.37 4.37 436.83 -2.07 -63.3% 4
Robotium 4.64 0.86 12.50 2.27 227.34 -4.26 -80.9% 2
UiAutomator 2.93 1.39 8.00 1.42 142.02 -4.62 -88.1% 1
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Fig. 10. Violin plot of the results for energy consumption of Input Text.

TABLE 10
Descriptive statistics of Find by id interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank
AndroidViewClient 37.52 1.64 129.91 12.97 46.34 7
Appium 5.94 0.51 12.73 3.53 12.62 5
Calabash 41.20 2.08 89.63 24.26 86.65 8
Espresso 1.37 0.11 2.03 0.99 3.54 2
Monkeyrunner 2.74 0.70 6.13 1.58 5.66 3
PythonUiAutomator 8.42 4.16 19.63 4.71 16.81 6
Robotium 27.97 0.46 143.03 0.94 3.37 1
UiAutomator 5.26 0.84 14.33 2.55 9.11 4

interaction but it is necessary to create interaction scripts.
Methods Find by description and Find by content are used to
achieve the same objective. For this reason, we do not report
the consumption of a human interaction in these cases.

For the sake of consistency with previous cases, we
report tables and figures in the same fashion. However, we
consider that the overall cost of energy consumption (without
removing idle cost) should not be discarded.

Robotium is the most energy efficient, with an energy
consumption without idle cost of 0.94J . However, if we
consider idle cost, Robotium is amongst the most energy
greedy frameworks (after Calabash and AndroidViewClient).
It has an overall energy consumption of 27.97J . When
considering idle cost, Espresso is the most energy efficient
framework.

This difference lies in the mechanism adopted by frame-
works to deal with UI changes. After user interaction, the UI
is expected to change and the status of the UI can become
obsolete. Thus, frameworks need to wait until the changes
the UI are complete. Results show that Robotium uses a
mechanism based on suspending the execution to make sure
the UI is up to date. On the other hand, Espresso uses a
different heuristic, which despite spending more energy on
computation tasks, it does not require the device to spend
energy while waiting.

4.10 Find by description

Results for Find by description are presented in Table 11 and
Figure 12. Find by description and Find by id are very similar
regarding usage and implementation, which is confirmed
by results. Espresso is the best framework regardless of
idle cost (x̄ = 1.37J and x̄′ = 0.97J). Android View Client
and Calabash are distinctly inefficient. All other frameworks
show reasonable energy footprints, except for Robotium
and Monkeyrunner, which were not included since Find by
description is not supported.
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Fig. 11. Violin plot of the results for energy consumption of Find by id.

TABLE 11
Descriptive statistics of Find by description interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank
AndroidViewClient 36.85 0.78 127.45 12.77 45.59 5
Appium 6.41 0.58 13.93 3.77 13.48 4
Calabash 41.41 7.02 88.20 24.75 88.38 6
Espresso 1.37 0.10 2.10 0.97 3.46 1
PythonUiAutomator 6.62 0.49 15.10 3.76 13.44 3
UiAutomator 5.13 0.61 14.47 2.40 8.57 2

4.11 Find by content

Results for Find by content are presented in Table 12 and Fig-
ure 13. After removing idle cost, Robotium is the framework
with best results (x̄′ = 0.14J). However, in resemblance to
Find by id, Robotium is very inefficient when idle cost is not
factored out (x̄ = 23.74J). In this case, Appium is the most
efficient framework (x̄ = 3.07J).

Unlike with Find by id and Find by description, Espresso did
not yield good results in this case (x̄ = 9.43J and x̄′ = 6.19J).
This is explained by the fact that Espresso runs natively
on the DUT. Thus, finding a UI component by content
requires extra processing: the DUT has to search for a pattern
in all components’ text content. Since remote script-based
frameworks, such as Appium, can do such task using the
controller workstation, they can be more energy efficient
from the DUT’s perspective. For the same reason, Find by
content has consistently higher energy usage than the other
helper methods.

4.12 Statistical significance

As expected from previous work and corroborated with the
violin plots, our measurements follow a normal distribution
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Fig. 12. Violin plot of the results for energy consumption of Find by
description.
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TABLE 12
Descriptive statistics of Find by content interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank
AndroidViewClient 36.89 1.65 127.62 12.77 106.43 6
Appium 3.07 0.31 6.07 1.92 16.02 4
Calabash 31.77 4.64 79.63 16.72 139.35 7
Espresso 9.43 0.99 17.13 6.19 51.58 5
PythonUiAutomator 3.10 0.19 6.90 1.79 14.93 3
Robotium 23.74 0.48 124.90 0.14 1.15 1
UiAutomator 3.50 0.62 9.40 1.72 14.37 2
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Fig. 13. Violin plot of the results for energy consumption of Find by
content.

– also confirmed with the Shapiro-Wilk test. Thus, we assess
the statistical significance of the mean difference of energy
consumption between frameworks using the parametric
Welch’s t-test as used in previous work [16]. We apply the
Benjamini-Hochberg procedure by correcting p-values with
the number of times a given sample is used in different tests.

All but a few tests (2 out 105) resulted in a small p-
value, below the significance level α = 0.05. For those pairs
where there was no statistical significance, we could not
find any meaningful finding. Given the myriad number
of tests performed, results are not presented. Violin plots
corroborate statistical significance by presenting very distinct
distributions among all different frameworks. For further
details, all results and data are publicly available13.

4.13 Threats to validity

Construct validity: Frameworks rely on different ap-
proaches to collect information about the UI components that
are visible on the screen. The app used in the experiments has
a UI that remains unchanged upon user interactions. In a real
scenario, however, the UI typically reacts to user interactions.
Frameworks that have an inefficient way of updating their UI
model of components visible in the screen, may entail a high
overhead on energy consumption. However, as manually
triggering this update is not supported in most frameworks,
it was unfeasible to include it in our study.

In addition, the overheads are calculated based on the
results collected from the human interaction from two
participants. Although results showed a small variance
between different participants, the energy consumption may
vary with other humans. Nevertheless, differences are not
expected to be significant, and results still apply.

13. Project’s Github repository: https://github.com/luiscruz/
physalia-automators visited on September 10, 2019.

Moreover, energy consumption for a single interaction
is inferred by the total consumption of a sequence of
interactions. Potential tail energy consumptions14 of a single
interaction are not being measured. This is mitigated by
running multiple times the same interaction.

Internal validity: The Android OS is continuously
running parallel tasks that affect energy consumption. For
that reason, system settings were customized as described in
Section 3 (e.g., disabled automated brightness and notifica-
tions). Also, each experiment is executed 30 times to ensure
statistical significance as recommended in related work [10].

UI interactions typically trigger internal tasks in the
mobile application running in foreground. The mobile appli-
cation used in experiments was developed to prevent any
side-effects to UI events. To ensure that scripts are interacting
with the device as expected, the application was set to a mode
that is not affected by user interaction. Thus, the behavior
is equal across different UI automation frameworks and
experiments only measure their energy consumption.

Finally, our experiments use a WiFi-configured ADB
instead of a USB connection. This is a requirement from
remote script-based frameworks. We did not measure the
energy consumption entailed from using a USB-configured
ADB. Nevertheless, we do not expect results to differ since
the WiFi connection is only used before and after the
measurements.

External validity: Energy consumption results vary
upon different versions of Android OS, different device
models, and different framework version. However, unless
major changes are released, results are not expected to
significantly deviate from the reported ones. Note that testing
different devices requires disassembling them and making
them useless for other purposes (that is to say that empirical
studies as the one conducted by us are expensive), which
can be economically unfeasible. Regardless, all the source
code used in experiments will be released as Open Source to
foster reproducibility.

5 DISCUSSION

By answering the research questions, in this section we
discuss our findings from the empirical evaluation, as well
as outline their practical implications.

RQ1: Does the energy consumption overhead created by UI
automation frameworks affect the results of the energy efficiency
of mobile applications?

Yes, results show that interactions can have a tremendous
overhead on energy consumption when an inefficient UI
automation framework is used.

According to previous work, executing a real app during
100s yields an energy consumption of 58J, on average [8].
Considering our results, executing a single interaction such
as Drag and Drop can increase energy consumption in 1.7J
(overhead of 3% in this case). However, given that mobile
apps are very reactive to user input [41], in 100 seconds of
execution, more interactions are expected to affect energy.

14. Tail energy is the energy spent during initialization or closure of a
resource.
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Although a fair comparison must control for different devices
and OS versions, this order of magnitude implies that
overheads are not negligible. Thus, choosing an efficient
UI automation framework is quintessential for energy tests.

Since all frameworks produce the same effect in the
UI, the overhead of energy consumption is created by
implementation decisions of the framework and not by the
interaction itself. The main goal of a UI testing framework is
to mimic realistic usage scenarios, but interactions with such
overhead can be considered unrealistic.

One practical implication of the results in this work is to
drive a change in the mindset of tool developers, bringing
awareness of the energy consumption of their frameworks.
Thus, we expect future releases of UI automation frameworks
to become more energy efficient.

AndroidViewClient and Calabash consistently showed poor
energy efficiency among all interactions. Despite providing a
useful and complete toolset for mobile software developers,
they should be used with prudence while testing the energy
consumption of an app that heavily relies on user interactions.
Work of Carette A. et al. (2017) [11] was affected by a poor
choice of framework: the authors used Calabash to mimic
between 136 and 325 user interactions in experiments that,
in total, consume roughly 350J. Considering our results, a
single tap with Calabash is equivalent to 0.45J – it means
that at least 60J (17%) were spent by the UI framework. The
same interactions with Espresso would have been reduced
to 12J (3%). The impact increases when considering other
interactions. Our work shows that results would be different
if the overhead of the framework had been factored out. On
the contrary, Calabash was also used in other work [12] but its
impact can be considered insignificant since experiments did
not require much interaction and the main source of energy
consumption came from Web page loads. Note, however,
that the measurement setup is different and results from
related work are not directly comparable. We plan to address
this analysis in future work. In any case, we consider that
using a more energy efficient framework could corroborate
the evidence or find new – even contradictory – conclusions.

RQ2: What is the most suitable framework to profile energy
consumption?

Choosing the right framework for a project can be
challenging: there is no one solution fits all. Based on our
observations, Figure 14 depicts a decision tree to help
software developers making an educated guess about the
most suited and energy efficient framework, given the
idiosyncrasies of an app (that may restrict the usage of a
framework). For example, if the project to be tested requires
WebView support, one should use Appium rather than the
other frameworks. Robotium is also an option if the app
requires Taps or Input Text only, and neither iOS support nor
remote scripting is required.

Remote script-based frameworks allow developers to
easily create automation scripts. The script can be iteratively
created using a console while interactions take effect on
the phone in real time. From our experience while doing
this work, remote script-based frameworks are easier to use
and set up (i.e., gradual learning curve). This is one of the

reasons many frameworks decided to use scripting languages
(e.g., Python and Ruby) instead of the official languages
for Android, Java or Kotlin. Notwithstanding, remote script-
based frameworks require an active connection with the
phone during measurements, which leads to higher energy
consumption (as is confirmed by results). Each step of the
interaction requires communication with the DUT; hence,
the communication logic unavoidably increases the energy
consumption. On the contrary, other frameworks can transfer
the interaction script in advance to the mobile phone and
run it natively on the phone, which is more energy efficient.

There are, however, two scenarios where remote script-
based frameworks exhibit the best results: Back Button with
Monkeyrunner (see Table 8), and Find By Content with Appium
(see Table 12). This is an interesting finding as it shows that
remote script-based frameworks can also be developed in an
energy efficient way. As such, this evidence shows that there
is room for energy optimization in the other frameworks.

In addition, USB communication is out of question for
remote script-based frameworks since it affects the reliability
of measurements. Frameworks that do not support remote
scripting can be used with USB connection if unplugged
during measurements (using tools such as Monsoon Power
Monitor).

Among remote script-based frameworks, Monkeyrunner
is the most energy efficient framework. The only problem
is that it does not support many of the studied interactions.
These results show that if energy consumption turns into a
priority, it is possible to make complex frameworks such as
Appium more energy efficient.

There are a number of other fine-grained requirements
that developers need to consider when choosing a UI
framework. A more thorough decision ought to consider
other factors, such as existing infrastructure, development
process, and learning curve. Nevertheless, we argue that
decision tree of Figure 14 provides an approximate insight
even though it does not take all factors into account.

RQ3: Are there any best practices when it comes to creating
automated scripts for energy efficiency tests?

One thing that stands out is the fact that looking up
one UI component is expensive. This task is exclusively
required for automation and does not reflect any real-world
interaction. Taking the example of Espresso: a single Tap
consumes 0.09J, while using content to look up a component
consumes 0.05J. Since a common Tap interaction requires
looking a component up, 36% of energy spent is on that task.

Looking up UI components is energy greedy because
the framework needs to process the UI hierarchy find a
component that matches a given id, description, or content.
Since the app we use has a very simple UI hierarchy, the
energy consumption is likely to be higher in real apps. Hence,
using lookup methods should be avoided whenever pos-
sible. A naive solution could be using the pixel position
of UI components instead of identifiers. Pixel positions
could be collected using a recorder. However, this is a bad
practice since it brings majors maintainability issues across
different releases and device models. For that reason, state-
of-the-art UI recorders used by Android developers, such as



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING (TSE), VOL. XX, NO. X, AUGUST 20XX 11

No
Espresso

Yes

iOS 
support? No

Yes

Appium

Monkeyrunner
No

BDD support
OR Complex UI 

interaction WebView
OR Hybrid app

support?

Remote scripting
OR WebView
OR Hybrid

app support?
No

Yes

Complex UI 
interaction OR Black 
Box OR Integration 

Test?

Remote 
scripting?No

Yes

UIAutomator

Yes

Fig. 14. Selecting the most suitable framework for energy measurements.

Robotium Recorder, yield scripts based on UI identifiers. As
an alternative, we recommend caching the results of lookup
calls whenever possible.

In addition, lookup methods Find by Id and Find by
Description should be preferred to Find by Content. Results
consistently show worse energy efficiency when using Find
by Content. In Espresso, this difference gives an increase in
energy consumption from 1.4J to 9.4J (overhead of 600%).

6 CONCLUSION

In this paper, we analyze eight popular UI automation
frameworks for mobile apps with respect to their energy
footprint. UI interactions have distinct energy consumptions
depending on the framework. Our results show that the
energy consumption of UI automation frameworks should
be factored out to avoid affecting results of energy tests.
As an example, we have observed the overhead of the Drag
and Drop interaction to go up to 2200%. Thus, practitioners
and researchers should opt for energy efficient frameworks.
Alternatively, the energy entailed by automated interactions
must be factored out from measurements.

Espresso is observed to be the most energy efficient
framework. Nevertheless, it has requirements that may
not apply to all projects: 1) requires access to the source
code, 2) does not support complex interactions such as
Drag and Drop and Pinch and Spread, 3) is not compatible
with WebViews, 4) is OS dependent, and 5) is not remote
script-based. Hence, there are situations where UIAutomator,
Monkeyrunner, and Appium are also worth considering. For
a more general purpose context, Appium follows as being
the best candidate. Thus, we propose a decision tree (See
Figure 14) to help in the decision-making process.

Furthermore, we have also noticed the following in our
experiments. Helper methods to find components in the
interface are necessary when building energy tests, but
should be minimized to prevent affecting energy results.
In particular, lookup methods based on the content of the
UI component need to be avoided. They consistently yield
poor energy efficiency when compared to lookups based on
id (e.g., in Espresso it creates an overhead of 600%).

This work paves the way for the inclusion of energy tests
in the development stack of apps. It brings awareness to the
energy footprint of tools used for energy test instrumentation,

affecting both academic and industrial use cases. It remains
to future work to design a catalog of energy-aware testing
patterns15.
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